如图,在平行四边形ABCD中,AC、BD相交于点O,∠AOB=∠ABC。求证:BD^2=2BC^2
热心网友
△∵∠ABC=∠AOB,∠BAC=∠OAB,∴△AOB∽△ABC∴BO/BC=AO/AB=AB/AC∵AC=2AO∴AB^2=2AO^2∴AO^2/AB^2=1/2∴BD^2/BC^2=(2BO)^2/BC^2=4AO^2/AB^2=4/2=2即BD^2=2BC^2
如图,在平行四边形ABCD中,AC、BD相交于点O,∠AOB=∠ABC。求证:BD^2=2BC^2
△∵∠ABC=∠AOB,∠BAC=∠OAB,∴△AOB∽△ABC∴BO/BC=AO/AB=AB/AC∵AC=2AO∴AB^2=2AO^2∴AO^2/AB^2=1/2∴BD^2/BC^2=(2BO)^2/BC^2=4AO^2/AB^2=4/2=2即BD^2=2BC^2