已知:a^2+b^2+c^2=1.a,b,c为实数,求证:-1/2<=ab+ac+bc<=1.
热心网友
1 = a^2+b^2+c^2 =[(a^2+b^2)+(b^2+c^2)+(c^2+a^2)]/2= [2ab+2bc+2ca]/2 = ab+bc+ca=== ab+bc+ca = -1=== ab+bc+ca = -1/2因此:-1/2 <= ab+bc+ca <= 1
已知:a^2+b^2+c^2=1.a,b,c为实数,求证:-1/2<=ab+ac+bc<=1.
1 = a^2+b^2+c^2 =[(a^2+b^2)+(b^2+c^2)+(c^2+a^2)]/2= [2ab+2bc+2ca]/2 = ab+bc+ca=== ab+bc+ca = -1=== ab+bc+ca = -1/2因此:-1/2 <= ab+bc+ca <= 1