在三角形ABC内部求一点P,使得PA^2+PB^2+ PC^2 取得最小
热心网友
建立直角坐标系,设A(m,n)、B(-p,0)、C(p,0) ,任一点为Q(x,y)因为(QA)^2+(QB)^2+(QC)^2 =(x-m)^2+(y-n)^2 +(x+p)^2+(x-p)^2 + 2y^2=3x^2 - 2mx +3y^2 -2ny +m^2+n^2+2p^2=3(x- m/3)^2 + 3(y- n/3)^2 + (2/3)m^2 + (2/3)n^2 +2P^2≥(2/3)m^2 + (2/3)n^2 +2P^2所以(QA)^2+(AB)^2+(AC)^2 的最小值为:(2/3)m^2 + (2/3)n^2 +2P^2当且仅当x= m/3 ,y=n/3时取等号,此时Q点为三角形ABC的重心