设f(x)连续,则定积分 ∫xf(sinx)dx 积分区间为(0-π)=定积分 (π/2)*∫f(sinx)dx 积分区间为(0-π)=定积分 π*∫f(sinx)dx 积分区间为(0-π/2)=定积分 π*∫f(cosx)dx 积分区间为(0-π/2)
热心网友
记住:定积分的结果只与被积函数、积分上下限有关,与被积变量的形式无关设u=π -x代入原式∫xf(sinx)dx =∫(π -u)f(sinu)du[积分区间0-π]=∫(π -x)f(sinx)dx[积分区间0-π]=π∫f(sinx)dx-∫xf(sinx)dx[积分区间0-π]=〉2∫xf(sinx)dx =π∫f(sinx)dx[积分区间0-π]=〉∫xf(sinx)dx=(π/2)*∫f(sinx)dx[积分区间0-π]在第一道题的基础之上∫xf(sinx)dx=(π/2)*∫f(sinx)dx[积分区间0-π/2] +(π/2)*∫f(sinx)dx[积分区间π/2-π]设u=π-x,∫f(sinx)dx[积分区间π/2-π]=∫f(sinx)dx[积分区间0-π/2]=∫xf(sinx)dx=π*∫f(sinx)dx 积分区间为(0-π/2)设u= π/2 - x代入原式∫xf(sinx)dx =∫(π/2 -u)f(cosu)du[积分区间-π/2-π/2]=π/2∫f(cosx)dx-∫xf(cosx)dx[积分区间-π/2-π/2]其中∫xf(cosx)dx=0[积分区间-π/2-π/2](关于x轴对称[xf(cosx)为奇函数])π/2∫f(cosx)dx=π∫f(cosx)dx[积分区间0-π/2]](关于x轴对称[f(cosx)为偶函数])=∫xf(sinx)dx =π∫f(cosx)dx[积分区间0-π/2]。